Formerly Appendix P-

## P. 1 BACKGROUND

The critical movement summation (CMS) method focuses on "raw" intersection capacity, that is, the ability for an intersection to process a given traffic demand with a given lane use configuration and given phase sequence.

Traffic signal phasing is one component of the analysis, but it is important to note that most of the subtleties of traffic signal phasing and operation are not included in the analysis.

The analyst can use this simple hands-on approach to get right to the point of an intersection’s ability to handle traffic demands. CMS looks at each of the "critical" movements at an intersection. It is a volume-based measure.

## P. 2 PROCESS

## Step 1. Gather CMS Inputs

- Hourly Volumes - Use vehicles per hour. If analyzing the peak hour, use the largest sum of 4 consecutive 15 -minute periods for that intersection, e.g. 7:45-8:45 AM.
- Lane Use Configurations - Determined through observation of existing geometry and operations.
- Signal Phasing - Use National Electrical Manufacturers Association (NEMA)
standard 8-phase operation with adjustments as needed. The top line of phasing on the CMS worksheet is intended to show existing phasing. The adjacent line below is workspace intended for conceptual improvements to phasing. See Figure P. 1 for a typical NEMA phase numbering schemes.

Figure P-1 Typical Phase numbering


## Step 2. Fill in CMS Worksheet

For each row, fill in the columns:

- Movement (describe in words, e.g. NB through, SB through, EB left, etc.)
- Phase (indicate movement number)
- Volume (in the case of a shared lane, write each volume long-hand, and then sum, e.g. $100+150+25)$
- LU (Lane Use factor, see table at bottom of worksheet.)
- Lane Volume (multiply the Volume by the Lane Use Factor.)
- OL (Opposing Lefts, to be added. See description of Permissive Only Lefts below.)
- LTC (Left Turn Credit, to be subtracted. See description of Concurrent Lefts or Lead/Lead-Lag Left below.)
- Critical Lane Volume (apply OL or LTC to the Lane Volume to get this Critical Lane Volume.)


## Step 3. Determine Critical Movements

In the CM column, note the highest of each movement pair (e.g. highest of NB/SB through, highest of NB left/SB left, etc.) with an asterisk*. There should be an asterisk (*) corresponding to each block in the top line of phasing on the CMS worksheet.

## Step 4. Sum the Critical Movements

Fill in the "Total" by adding the movements that have asterisks*. Assign a Level of Service (LOS) by using the Level of Service table at the bottom of the CMS worksheet.

## P. 3 RULES FOR TURNING MOVEMENTS

## P.3.1 RIGHT TURNS

If right-turn is "hot" or "free" (i.e. has a dedicated, channelized deceleration and acceleration lanes) and is not signal controlled, leave out of computation.

If right-turn has a dedicated lane and is signal controlled with right-turn-on-red permitted, assume $50 \%$ of right-turn volume.

If right-turn has a dedicated lane and is signal controlled with "No right turn on red," assume $100 \%$ of right-turn volume.

If right-turn has a dedicated lane and is signal controlled for rights to move concurrently with lefts (e.g. NB rights move with WB lefts), reduce the right-turn volume in the amount of the left-turn volume.

If there is a shared through/right lane, add through and right volumes.

## P.3.2 LEFT TURNS

Left turns are to be treated as either protected (signalized left-turn arrow) or permissive (no left-turn arrow). If existing condition allows a left-turn movement to be both protected and permissive, analyze as protected (only) in CMS.

## P.3.2.1 Concurrent

Lefts


Account for Left Turn Credit (LTC) as follows:

- Calculate lane volumes for left-turn moves
- Apply lane-use factor
- Calculate difference of lefts (e.g. NB/SB lefts or EB/WB lefts)
- Subtract this difference from the through movement that's in the same direction as the greater left-turn volume.

CMS may over or underestimate the impact of left turn traffic on shared left-through-right lane in situations where through opposing volume is high. Additional Analysis (such as the methods of the Highway Capacity Manual) may be warranted.
P.3.2.2 Lead Left (one direction), or LeadLag


Account for Left Turn Credit (LTC) as follows:

- Identify left-turn volume associated with the lead (or lag) phase.
- Apply lane-use factor.
- Subtract that left-turn volume from the through movement on the same approach.


## P.3.2.3 Permissive Only Lefts (no left-turn arrow)



Account for Opposing Lefts (OL) as follows:

- Identify left-turn volume that will be awaiting gaps in the through volume. (These lefts are considered "opposing lefts" - opposing the through volume being analyzed.)
- Add that left-turn volume to the opposing through movement.
- The left turns cannot move until the opposing through movement is complete. So you must consider the total of these two movements, since they cannot move simultaneously.


## P.3.2.4 Split

Phasing


- Left-turn credit (LTC) does not apply.
- Opposing lefts (OL) do not apply.


## P. 4 SIGNAL TIMING

CMS can be used as a prerequisite to signal timings. The following steps follow CMS to
determine cycle length and required green and clearance (yellow and all red) time:

Step 1. Transfer phasing and Critical Lane Volume (CLV) Inputs from CMS worksheet onto the Traffic Signal Timing Worksheet (see Figure P-2)
Step 2. Determine number of vehicles per cycle per phase. The table included in the Traffic Signal Timing Worksheet can be used to determine the number of cycles in an hour (or simply divide 3600 seconds by the cycle length).
Step 3. Determine green time required from Greenshield’s model (see Figure P-3)
Step 4. Determine clearance and pedestrian timings.
Step 5. Determine total time required and compare to cycle length.

## P. 5 CMS SAMPLE EXERCISE PROBLEMS

See Figures P-5 through P-14 for CMS sample exercise problems.

## P. 6 SIGNAL TIMING SAMPLE EXERCISE PROBLEM

See Figure P-16 for a sample signal timing exercise problem.

Figure P-2 Traffic Signal Timing Worksheet

Location: $\qquad$ Date:

Cycle Length: $\qquad$ Cycles per Hour: $\qquad$ Prepared by: $\qquad$

Time of Day: $\qquad$

| Phases | Movement | Critical lane <br> Volume <br> (CLV) | Vehicles per <br> Cycle | Green Time <br> Required <br> (see <br> Greenshield <br> Figure P-3) | Clearance <br> (Red + <br> Yellow) | Walk + <br> Don't Walk |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| Total Green |  |  |  |
| :---: | :--- | :--- | :--- |
| Total Clearance |  |  |  |
| Total Time Required |  |  |  |


| Cycle <br> Length | Cycles per <br> Hour |
| :---: | :---: |
| 45 | 80 |
| 60 | 60 |
| 75 | 48 |
| 90 | 40 |
| 100 | 36 |
| 120 | 30 |
| 150 | 24 |
| 180 | 20 |
| 210 | 17 |
| 240 | 15 |

Figure P-3 Traffic Signal Green Time Requirements (Greenshield’s Model)

| Vehicles per <br> Cycle per lane | Seconds per <br> Vehicle | Cumulative <br> seconds | Vehicles per <br> Cycle per lane | Seconds per <br> Vehicle | Cumulative <br> seconds |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3.8 | 3.8 | 24 | 2.1 | 54.1 |
| 2 | 3.1 | 6.9 | 25 | 2.1 | 56.2 |
| 3 | 2.7 | 9.6 | 26 | 2.1 | 58.3 |
| 4 | 2.4 | 12.0 | 27 | 2.1 | 60.4 |
| 5 | 2.2 | 14.2 | 28 | 2.1 | 62.5 |
| 6 | 2.1 | 16.3 | 29 | 2.1 | 64.6 |
| 7 | 2.1 | 18.4 | 30 | 2.1 | 66.7 |
| 8 | 2.1 | 20.5 | 31 | 2.1 | 68.8 |
| 9 | 2.1 | 22.6 | 32 | 2.1 | 70.9 |
| 10 | 2.1 | 24.7 | 33 | 2.1 | 73.0 |
| 11 | 2.1 | 26.8 | 34 | 2.1 | 75.1 |
| 12 | 2.1 | 28.9 | 35 | 2.1 | 77.2 |
| 13 | 2.1 | 31.0 | 36 | 2.1 | 79.3 |
| 14 | 2.1 | 33.1 | 37 | 2.1 | 81.4 |
| 15 | 2.1 | 35.2 | 38 | 2.1 | 83.5 |
| 16 | 2.1 | 37.3 | 39 | 2.1 | 85.6 |
| 17 | 2.1 | 39.4 | 40 | 2.1 | 87.7 |
| 18 | 2.1 | 41.5 | 41 | 2.1 | 89.8 |
| 19 | 2.1 | 43.6 | 42 | 2.1 | 91.9 |
| 20 | 2.1 | 45.7 | 43 | 2.1 | 94.0 |
| 21 | 2.1 | 47.8 | 44 | 2.1 | 96.1 |
| 23 | 2.1 | 49.9 | 45 | 2.1 | 98.2 |
| 2 | 2.1 | 52.0 | 46 | 2.1 | 100.3 |

Figure P-4
CMS Blank Sheet


Figure P-5 CMS Example 1 - Permissive Lefts - Shared Lefts



Figure P-6 CMS Example 2 - Split E-W Phasing - Shared Lefts



Figure P-7 CMS Example 3 - Split All Phasing - Shared Lefts



Figure P-8 CMS Example 4-Permissive Lefts - Separate Lefts



Figure P-9 CMS Example 5 - Permissive Lefts - Two Throughs and a Shared Left


Signal Phasing ( $\Phi$ )


Figure P-10 CMS Example 6 - Protected Lefts - Separate Lefts


Signal Phasing ( $\mathbf{\Phi}$ )


Figure P-11 CMS Example 7 - Split EW - Separate Lefts


Signal Phasing ( $\mathbf{\Phi}$ )


Figure P-12 CMS Example 8 - Protected Permissive Lefts - Separate Lefts - Separate Rights


Signal Phasing ( $\Phi$ )


Figure P-13 CMS Example 9 - Protected Lefts - Double Lefts


Signal Phasing ( $\Phi$ )


Figure P-14
CMS Example 10 - Lead-Lag Phasing


Signal Phasing ( $\Phi$ )


Figure P-15
Summary of Exercises



Figure P-16
Traffic Signal Timing Exercise
Location:
Rt. 300 and Rt. 42
Date: 01/01/06
Cycle Length: 100 Cycles per Hour: 36 Prepared by: ABC 01/01/06
Time of Day: $\quad$ AM Peak Hour $\quad$ Checked by: JHI 01/02/06

| Phases | Movement | Critical lane <br> Volume <br> (CLV) | Vehicles per <br> Cycle | Green Time <br> Required <br> (see <br> Greenshield <br> Figure P-3) | Clearance <br> (Red + <br> Yellow) | Walk + <br> Don’t Walk |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2+6$ | Rt. 300 | 1094 | 30 | 67 | $3+2$ | - |
| $4+8$ | Rt. 42 | 422 | 12 | 29 | $3+2$ | - |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| Total Green | 96 |  |  |
| :---: | :---: | :--- | :--- |
| Total Clearance | 10 |  |  |
| Total Time Required | 106 |  |  |


| Cycle <br> Length | Cycles per <br> Hour |
| :---: | :---: |
| 45 | 80 |
| 60 | 60 |
| 75 | 48 |
| 90 | 40 |
| 100 | 36 |
| 120 | 30 |
| 150 | 24 |
| 180 | 20 |
| 210 | 17 |
| 240 | 15 |

